Fourth Homework, due July 30th

1. Use the integral test to decide wether the series converge:
I) $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$

1I) $\sum_{n=1}^{\infty} n e^{-n}$
2. Determine wether the series converges or diverges:
I) $\sum_{n=1}^{\infty} \frac{2^{n} n!}{(n+2)!}$
II) $\sum_{n=1}^{\infty} \frac{\sin (1 / n)}{\sqrt{n}}$
III) $\sum_{n=2}^{\infty} \frac{1}{\ln n^{\ln n}}$
IV) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin (n)}{n}$
3. Find the radius of convergence of the following power series:
a) $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$
b) $\sum_{n=1}^{\infty} \frac{x^{2 n}}{(2 n)!}$
c) $\sum_{n=1}^{\infty} \frac{n^{2} x^{n}}{(2)(4)(6) \ldots(2 n)}$
4. Let $f(x)=1+2 x+x^{2}+x^{4}+\ldots$. Find the interval of convergence of f and an explicit formula for it.
5. Find a power series for $f(x)=\frac{x}{1+9 x^{2}}$.
6. Let $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$. Find the intervals at which f, f^{\prime} and $f^{\prime \prime}$ converge.
7. Find the Taylor series of e^{x} centered at $a=3$.
8. Use series to find $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{1+x-e^{x}}$.
9. Find the first three nonzero terms in the Maclaurin series of $\frac{x}{\sin (x)}$.

