Carnegie Mellon University 21-122, Summer Session 2012

Fourth Homework, due July 30th

1. Use the integral test to decide wether the series converge:

I)
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$
II)
$$\sum_{n=1}^{\infty} n e^{-n}$$

2. Determine wether the series converges or diverges:

I)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{(n+2)!}$$
II)
$$\sum_{n=1}^{\infty} \frac{\sin(1/n)}{\sqrt{n}}$$
III)
$$\sum_{n=2}^{\infty} \frac{1}{\ln n^{\ln n}}$$
IV)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin(n)}{n}$$

3. Find the radius of convergence of the following power series:

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

b) $\sum_{n=1}^{\infty} \frac{x^{2n}}{(2n)!}$
c) $\sum_{n=1}^{\infty} \frac{n^2 x^n}{(2)(4)(6)\dots(2n)}$

- 4. Let $f(x) = 1 + 2x + x^2 + x^4 + \dots$ Find the interval of convergence of f and an explicit formula for it.
- 5. Find a power series for $f(x) = \frac{x}{1+9x^2}$.

- 6. Let $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$. Find the intervals at which f, f' and f'' converge.
- 7. Find the Taylor series of e^x centered at a = 3.
- 8. Use series to find $\lim_{x\to 0} \frac{1-\cos(x)}{1+x-e^x}$.
- 9. Find the first three nonzero terms in the Maclaurin series of $\frac{x}{\sin(x)}$.